Effect of Saxagliptin on Cisplatin-Induced Nephrotoxicity in Rats

Document Type : Original Article

Authors

1 Pharmacology department, Faculty of Medicine, Beni-Suef University

2 Pathology department, Faculty of Medicine, Beni-Suef University

Abstract

Background: Nephrotoxicity is the most common side effect of cisplatin, cisplatin as a chemotherapy is used widely in the treatment of solid tumors so nephro-protection is highly recommended. Saxagliptin is a new antidiabetic drug that show great effect in improving the glycemic profile of patient with type 2 diabetes mellitus. Aim: The current study investigated the renoprotective effect of saxagliptin (12.5mg/kg, IP) against cisplatin-induced nephrotoxicity in rats. Methods: Twenty-four adult male albino rats were randomly assigned to four groups, each group contained 6 rats. Results: Saxagliptin administration for 14 days revealed a significant nephroprotection against cisplatin-induced nephrotoxicity manifested by improvement in kidney function, significant decrease in the serum urea and creatinine, albuminuria, and albumin/creatinine ratio, while significant increase in the urine volume, and urine creatinine.  Also, kidney contents of MDA, TNFα and DPP4 enzyme level significantly declined with significant increase in GSH, catalase concentration compared to cisplatin treated group. Also, significant histopathological improvement occurred. Conclusion: saxagliptin has anti oxidative stress effects and anti-inflammatory properties through long-lasting inhibition of renal membrane bound DPP4 enzyme.

Keywords

Main Subjects


  1. Perazell M. A. (2009). Renal vulnerability to drug toxicity. Clinical Journal of the American Society of Nephrology, 4(7), 1275-1283.
  2. ‏ Miller R. P., Tadagavadi, R. K., Ramesh, G., & Reeves, W. B. (2010). Mechanisms of cisplatin nephrotoxicity. Toxins, 2(11), 2490-2518.‏
  3. Zhu X., Jiang X., Li A., Zhao Z., & Li S. (2017). S‐Allylmercaptocysteine attenuates cisplatin‐induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation. Nutrients, 9(), 166.
  4. Kumar P., Sulakhiya K., Barua C. C., & Mundhe N. (2017). TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Molecular and Cellular Biochemistry, 431(1), 113-122.‏
  5. Chtourou Y., Aouey B., Kebieche M., & Fetoui H. (2015). Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chemico-Biological Interactions, 239, 76-86.
  6. Saral S., Ozcelik E., Cetin A., Saral O., Basak N., Aydın M., & Ciftci O. (2016). Protective role of diospyros lotus on cisplatin‐induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Andrologia, 48(3), 308-317.
  7. Pedraza-Chaverrí J., Barrera D., Maldonado P. D., Chirino Y. I., Macías-Ruvalcaba N. A., Medina-Campos O. N., & Hernández-Pando R. (2004). S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo. BMC Clinical Pharmacology, 4(1), 5.
  8. Divya M. K., Lincy L., Raghavamenon A. C., & Babu T. D. (2016). Ameliorative effect of Apodytes dimidiata on cisplatin-induced nephrotoxicity in Wistar rats. Pharmaceutical Biology, 54(10), 2149-2157.
  9. Romero F., Pérez M., Chávez M., Parra G., & Durante P. (2009). Effect of uric acid on gentamicin‐induced nephrotoxicity in rats–role of matrix metalloproteinases 2 and 9. Basic & Clinical Pharmacology & Toxicology, 105(6), 416-424.
  10. Ali B. H., & Al Moundhri M. S. (2006). Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food and Chemical Toxicology, 44(8), 1173-1183.
  11. Kagal UA, Angadi NB, Matule SM. (2017). Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. International Journal of Applied and Basic Medical Research, 7(1), 26.‏
  12. Cornell S. (2014). Type 2 diabetes treatment recommendations update: Appropriate use of dipeptidyl peptidase-4 inhibitors. J Diabetes Metabolism, 5(414), 2.
  13. Uchii M., Sakai M., Hotta Y., Saeki S., Kimoto N., Hamaguchi A., & Kunori S. (2017). The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo. Journal of Pharmacological Sciences, 135(3), 126-130.
  14. Sakai M., Uchii M., Myojo K., Kitayama T., & Kunori S. (2015). Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats. European Journal of Pharmacology, 761, 109-115.
  15. Naghizadeh B., Boroushaki M. T. Vahdati M., N., & Mansouri M. T. (2008). Protective effects of crocin against cisplatin-induced acute renal failure and oxidative stress in rats. Iranin Biomedical Journal ,12(1),93-100.
  16. Van Herck H., Baumans V., Brandt C. J. W. M., Hesp A. P. M., Sturkenboom J. H., Van Lith H. A., & Beynen A. C. (1998). Orbital sinus blood sampling in rats as performed by different animal technicians: the influence of technique and expertise. Laboratory Animals, 32(4), 377-386.
  17. Vane J. R., & Botting R. M. (1998). Anti-inflammatory drugs and their mechanism of action. Inflammation Research, 47(2), 78-87.‏
  18. Miller R. P., R. K. Tadagavadi G. Ramesh and W. B. Reeves (2010). "Mechanisms of Cisplatin nephrotoxicity." Toxins (Basel) 2(11): 2490-2518.
  19. Alhoshani A. R., Hafez M. M., Husain S., Al-Sheikh A. M., Alotaibi M. R., Al Rejaie S. S., ... & Al-Shabanah O. A. (2017). Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC nephrology, 18(1), 1-10.
  20. Duffy, E. A., Fitzgerald W., Boyle K., & Rohatgi R. (2018). Nephrotoxicity: Evidence in patients receiving cisplatin therapy. Clinical Journal of Oncology Nursing, 22(2).
  21. Fadini G. P. & A. Avogaro (2011). "Cardiovascular effects of DPP-4 inhibition: beyond GLP-1." Vascular Pharmacology 55(1-3): 10-16.
  22. Wang R., Hassan W., Jabeen, Q., Ahmed H., & Iqbal O. (2019). Citrus aurantium ameliorates cisplatin-induced nephrotoxicity. BioMed Research International, 2019.‏
  23. Alhadeff A. L., Holland R. A., Zheng H., Rinaman L., Grill H. J., & De Jonghe B. C. (2017). Excitatory hindbrain–forebrain communication is required for cisplatin-induced anorexia and weight loss. Journal of Neuroscience, 37(2), 362-370.
  24. Abdel-Aal R. A., Abdel-Rahman M. S., Al Bayoumi S., & Ali L. A. (2020). Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. Journal of Ethnopharmacology, 265, 113188.‏
  25. Poucher S. M., Cheetham S., Francis J., Zinker B., Kirby M., & Vickers S. P. (2012). Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic β‐cell mass in a streptozotocin‐induced mouse model of type 2 diabetes. Diabetes, Obesity and Metabolism, 14(10), 918-926.
  26. Xu, Yanfang, Huabin Ma, Jing Shao, Jianfeng Wu, Linying Zhou, Zhirong Zhang, Yuze Wang et al. "A role for tubular necroptosis in cisplatin-induced AKI." (2015) Journal of the American Society of Nephrology, 26 (11), 2647-2658.
  27. Saad S. Y., Najjar T. A., Daba M. H., & Al-Rikabi A. C. (2002). Inhibition of nitric oxide synthase aggravates cisplatin-induced nephrotoxicity: effect of 2-amino-4-methylpyridine. Chemotherapy, 48(6), 309-315.‏
  28. Haghighi M., Nematbakhsh M., Talebi A., Nasri H., Ashrafi F., Roshanaei K., ... & Safari T. (2012). The role of angiotensin II receptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: gender-related differences. Renal failure, 34(8), 1046-1051.‏
  29. Helal M. G., M. Zaki and E. Said (2018). "Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant anti-inflammatory and anti-apoptic effects." Life Science 208: 64-71.
  30. Abdel Moneim A. E., Othman M. S., & Aref A. M. (2014). Azadirachta indica attenuates cisplatin-induced nephrotoxicity and oxidative stress. BioMed ResearchInternational, 2014.‏
  31. Ali B. H., Al Moundhri M. S., Tag Eldin M., Nemmar A., & Tanira M. O. (2007). The ameliorative effect of cysteine prodrug L‐2‐oxothiazolidine‐4‐carboxylic acid on cisplatin‐induced nephrotoxicity in rats. Fundamental & Clinical Pharmacology, 21(5), 547-553.‏
  32. Alibakhshi T., Khodayar M. J., Khorsandi L., Rashno M., & Zeidooni L. (2018). Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomedicine & Pharmacotherapy, 105, 225-232.‏
  33. Abdelrahman A. M., Y. A. Suleimani M. A. Za'abi M. Ashique P. Manoj C. Hartmann A. Nemmar N. Schupp & B. H. Ali (2019). "The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats." Biomed Pharmacotherapy 110: 667-676.
  34. Kumar P., Sulakhiya K., Barua C. C., & Mundhe N. (2017). TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Molecular and Cellular Biochemistry, 431(1), 113-122.‏
  35. Zhu X., Jiang X., Li, A., Zhao Z., & Li S. (2017). S‐Allylmercaptocysteine attenuates cisplatin‐induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation. Nutrients, 9(2), 166.
  36. Zhang B., G. Ramesh C. C. Norbury and W. B. Reeves (2007). "Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells." Kidney International 72(1): 37-44.
  37. Choi S. H., J. Leem and I.-K. Lee (2017). "Protective Effects of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, against Cisplatin-Induced Nephrotoxicity in Mice." Mediators of Inflammation: 2017,11-28.
  38. TanakaT., Y. HigashijimaT. Wada &M. Nangaku (2014). "The potential for renoprotection with incretin-based drugs." Kidney International 86(4): 701-711.
  39. Sun A. L., Deng J. T., Guan G. J., Chen S. H., Liu Y. T.,   Cheng J., & Deng H. P. (2012). Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diabetes and Vascular Disease Research, 9(4), 301-308.‏
  40. Hocher B., Reichetzeder C., & Alter M. L. (2012). Renal and cardiac effects of DPP4 inhibitors–from preclinical development to clinical research. Kidney and blood pressure research, 36(1), 65-84.‏
  41. RöhrbornD., Wronkowitz N., & Eckel J. (2015). DPP4 in diabetes. Frontiers In Immunology, 6, 386.‏
  42. Van Acker T., Buckle T., Van Malderen S. J., van Willigen D. M., van Unen V., van Leeuwen F. W., & Vanhaecke F. (2019). High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Analytica Chimica Acta, 1074, 43-53.‏
  43. El Amir Y. O., Omar W., Khabrani A. Y., Jahfali A. E., Alhakami S. M., & Dobab N. M. (2019). Protective effect of avenanthramides against cisplatin induced nephrotoxicity in rats. Journal of Advanced Veterinary and Animal Research, 6(4), 521.‏
  44. Abdel-Razek E. A. N., Abo-Youssef A. M., & Azouz A. A. (2020). Benzbromarone mitigates cisplatin nephrotoxicity involving enhanced peroxisome proliferator-activated receptor-alpha (PPAR-α) expression. Life Sciences, 243, 117272.‏
  45. Ali B. H., Al Salam S., Al Suleimani Y., Al Za'Abi M., Ashique M., Manoj P., ... & Nemmar A. (2020). Ameliorative Effect of Sesamin in Cisplatin-Induced Nephrotoxicity in Rats by Suppressing Inflammation, Oxidative/Nitrosative Stress, and Cellular Damage. Physiological Research, 69(1), 61-72.‏
  46. Humanes B., Lazaro A., Camano S., Moreno-Gordaliza E., Lazaro J. A., Blanco-Codesido M., & Tejedor A. (2012). Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney international, 82(6), 652-663.‏
  47. Al Suleimani Y. M., A. M. Abdelrahman T. Karaca P. Manoj M. Ashique A. Nemmar and B. H. Ali (2018). "The effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on gentamicin nephrotoxicity in mice." Biomedical Pharmacothearpy 97: 1102-1108.
  48. Sakai M., Uchii M., Myojo K., Kitayama T., & Kunori S. (2015). Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats. European Journal of Pharmacology, 761, 109-115.
  49. Uchii M., Kimoto N., Sakai M., Kitayama, T., & Kunori S. (2016). Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats. European Journal of Pharmacology, 783, 56-63.
  50. Shalaby R.H., Rashed L.A., Ismaail A.E., Madkour N.K. and Elwakeel S.H. (2014): Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. Am. J. Stem Cells, 3(2): 83–96.
  51. Prabhu V. V., Kannan N., & Guruvayoorappan, C. (2013). 1, 2-Diazole prevents cisplatin-induced nephrotoxicity in experimental rats. Pharmacological Reports, 65(4), 980-990.‏