Bone Sialoprotein Level in Osteoporotic Diabetic Patients type II with Microvascular Complication

Document Type : Original Article

Authors

1 Internal medicine department, Faculty of Medicine, Beni-Suef University, Egypt

2 Clinical pathology department, Faculty of Medicine, Beni-Suef University, Egypt

Abstract

Objective:  The aim of this study is to assess the level of serum bone sialoprotein as a diagnostic biomarker in cases of diabetic bone diseases and its relation to diabetic microvascular complications. Methods:  A total of 60 subjects; 30 diabetic patients type II with micro-vascular complications (retinopathy and/or nephropathy) as a case group and 30 healthy individuals serve as control group was recruited in this case–control study from diabetes and endocrinology clinic and internal medicine department in Beni Suef university hospital. The biochemical and metabolic parameters and bone turnover marker will be assessed in all patients.  Results: Serum bone sialoprotein (BSP) was found to be significantly higher in diabetic patients with microvascular complication compared to normal control group. Moreover, bone sialoprotein (BSP) was positively correlated to osteoporosis of lumbar spine. Conclusion: Bone sialoprotein increase could be used as a biomarker of diabetic bone disease diagnosis and could be a predictor of spinal osteoporotic fractures in diabetic patients.

Keywords

Main Subjects


  1. Johnell, O., & Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international, 17(12), 1726-1733.2. Stein, E., & Shane, E. (2003). Secondary osteoporosis. Endocrinology and metabolism clinics of North America, 32(1), 115-34.
  2. Dede, A. D., Tournis, S., Dontas, I., & Trovas, G. (2014). Type 2 diabetes mellitus and fracture risk. Metabolism, 63(12), 1480-1490.
  3. Forst, T., Beyer, J., Pfützner, A., Kann, P., Schehler, B., Lobmann, R., ... & Bockisch, A. (1995). Peripheral osteopenia in adult patients with insulin‐dependent diabetes mellitus. Diabetic Medicine, 12(10), 874-879.
  4. Kayath, M. J., Dib, S. A., & Vieira, J. H. (1994). Prevalence and magnitude of osteopenia associated with insulin-dependent diabetes mellitus. Journal of Diabetes and its Complications, 8(2), 97-104.
  5. Clausen, P., Feldt‐Rasmussen, B., Jacobsen, P., Rossing, K., Parving, H. H., Nielsen, P. K., ... & Olgaard, K. (1997). Microalbuminuria as an early indicator of osteopenia in male insulin‐dependent diabetic patients. Diabetic medicine, 14(12), 1038-1043.
  6. Lim, Y., Chun, S., Lee, J. H., Baek, K. H., Lee, W. K., Yim, H. W., & Kang, M. I. (2016). Association of bone mineral density and diabetic retinopathy in diabetic subjects: the 2008–2011 Korea National Health and Nutrition Examination Survey. Osteoporosis International, 27(7), 2249-2257.
  7.  Roy, B. (2013). Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World journal of diabetes, 4(4), 101.
  8. . Napoli, N., Schwartz, A. V., Palermo, L., Jin, J. J., Wustrack, R., Cauley, J. A., ... & Black, D. M. (2013). Risk factors for subtrochanteric and diaphyseal fractures: the study of osteoporotic fractures. The Journal of Clinical Endocrinology & Metabolism, 98(2), 659-667.
  9. Clemens, T. L., & Karsenty, G. (2011). The osteoblast: an insulin target cell controlling glucose homeostasis. Journal of Bone and Mineral Research, 26(4), 677-680.
  10. Fisher, L. W., McBride, O. W., Termine, J. D., & Young, M. F. (1990). Human bone sialoprotein. Deduced protein sequence and chromosomal localization. Journal of Biological Chemistry, 265(4), 2347-2351.
  11. . Van Daele, P. L., Seibel, M. J., Burger, H., Hofman, A., Grobbee, D. E., van Leeuwen, J. P., ... & Pols, H. A. (1996). Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. Bmj, 312(7029), 482-483.
  12. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., & Nathan, D. M. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 346(6), 393-403.
  13. Lawrence, M. G. (2004). The accuracy of digital-video retinal imaging to screen for diabetic retinopathy: an analysis of two digital-video retinal imaging systems using standard stereoscopic seven-field photography and dilated clinical examination as reference standards. Transactions of the American Ophthalmological Society, 102, 321.
  14. Haneda, M., Utsunomiya, K., Koya, D., Babazono, T., Moriya, T., Makino, H., ... & Joint Committee on Diabetic Nephropathy. (2015). A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. Journal of diabetes investigation, 6(2), 242-246.
  15. Bergman, P., Grjibovski, A. M., Hagströmer, M., Sallis, J. F., & Sjöström, M. (2009). The association between health enhancing physical activity and neighbourhood environment among Swedish adults–a population-based cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 6(1), 1-9.
  16. . Luedde, M., Roy, S., Hippe, H. J., Cardenas, D. V., Spehlmann, M., Vucur, M., ... & Roderburg, C. (2018). Elevated serum levels of bone sialoprotein during ICU treatment predict long-term mortality in critically ill patients. Scientific reports, 8(1), 1-10.
  17. . Tsai, T-L.; +Li, W-J; Wang, A.R.; Squire, M.W. (2012) The Role of Mesenchymal Stem Cell in Diabetic Osteoporosis +University of Wisconsin-Madison, Madison, WI li@ortho.wisc.edu
  18. . Chen, N. X., & Moe, S. M. (2003). Arterial calcification in diabetes. Current diabetes reports, 3(1), 28-32.
  19. Wierzbicka, E., Swiercz, A., Pludowski, P., Jaworski, M., & Szalecki, M. (2018). Skeletal Status, Body Composition, and Glycaemic Control in Adolescents with Type 1 Diabetes Mellitus. Journal of diabetes research, 2018, 8121634. https://doi.org/10.1155/2018/8121634
  20. . Moseley K. F. (2012). Type 2 diabetes and bone fractures. Current opinion in endocrinology, diabetes, and obesity, 19(2), 128–135. https://doi.org/10.1097/MED.0b013e328350a6e1.
  21. Ganeko, K., Masaki, C., Shibata, Y., Mukaibo, T., Kondo, Y., Nakamoto, T., ... & Hosokawa, R. (2015). Bone aging by advanced glycation end products: a multiscale mechanical analysis. Journal of dental research, 94(12), 1684-1690.