Prognostic value of IL18 serum levels in COVID-19 Patients at Beni- Suef University Hospital

Document Type : Original Article

Authors

1 Medical Microbiology and Immunology Department, Faculty of Medicine, Nahda University, Egypt

2 Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Egypt

3 Chest Department, Faculty of Medicine, Beni-Suef University, Egypt

Abstract

A cross-sectional, analytical study conducted over a period of 6 months from April to September 2021 after the approval of REC on 50 patients with confirmed positive of COVID-19 by SARS-CoV-2 nucleic acid RT-PCR recruited from Isolation departments and intensive care units (ICUs), Beni-Suef University hospital. The goal of this study was to assess the serum level of (IL-18) as a biomarker of COVID-19 disease progression.  All participants underwent complete blood count (CBC), C- reactive protein (CRP), fibrinogen, D-dimer and liver enzymes and measurement of serum IL- 18 level. All patients had been followed until hospital discharge or death. Forty-two patients (84%) recovered and discharged from the hospital while eight cases (16%) died due to different etiologies: 2 patients due to suppurative lung infection, another 2 because of multi organ failure, 2 patients owing to respiratory failure and alveolar damage, and the last 2 patients with cardiac comorbidity after ischemic heart disease and hypertension.
There were a significant higher level of CRP, D-dimer, ferritin, and IL-18 among died as compared with recovered COVID-19 patients. Platelets count was significantly higher among recovered as compared with died COVID-19 patients. Correlation test showed a significant positive strong linear relationship between CRP level and IL-18, D-dimer level, and IL-18, and between ferritin level and IL-18. High values of IL-18 in patients’ serum helped to assess the poor prognosis which was statistically significant with 81.5% sensitivity and 57.5% specificity at a cutoff point level ≥ 230.75. Elevated serum levels of IL-18 were associated with fatal outcome in the COVID-19 infected patients and showed strong correlation with other inflammatory markers.

Keywords

Main Subjects


  1. Pillaiyar, T., Wendt, L. L., Manickam, M., & Easwaran, M. (2020). The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Medicinal research reviews.
  2. Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what   we   know    so far. Frontiers in immunology, 11, 1446.
  3. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., ... & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8(4), 420-422.
  4. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ... & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069.
  5. Yang, B. Y., Barnard, L. M., Emert, J. M., Drucker, C., Schwarcz, L., Counts, C. R., ... & Rea, T. (2020). Clinical characteristics of patients with coronavirus disease 2019 (COVID-19) receiving emergency medical services in King County, Washington. JAMA network open, 3(7), e2014549-e2014549.
  6. Ryu, W. S. (2017). Other Positive-Strand RNA Viruses. Molecular Virology of Human Pathogenic Viruses, 177.
  7. Awadasseid, A., Wu, Y., Tanaka, Y., & Zhang, W. (2020). Initial success in the identification and management of the coronavirus disease 2019 (COVID-19) indicates human-to-human transmission in Wuhan, China. International Journal of Biological Sciences, 16(11), 1846.
  8. Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y., & Zhou, X. (2020). Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of clinical virology, 127, 104370.
  9. Dhand, R., & Li, J. (2020). Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV- 2. American journal of respiratory and critical care medicine, 202(5), 651-659.
  10. Jeyanathan, M., Afkhami, S., Smaill, F., Miller, M. S., Lichty, B. D., & Xing, Z. (2020). Immunological considerations for COVID-19 vaccine Nature        Reviews Immunology, 20(10), 615-632.
  11. Gandhi P, A., & Singh, T. (2020). Feco- Oral Transmission of SARS-CoV-2. Asia Pacific Journal of Public Health, 32(6-7), 370- 370.
  12. Karia, R., Gupta, I., Khandait, H., Yadav, A., & Yadav, A. (2020). COVID-19 and its Modes of Transmission. SN Comprehensive Clinical Medicine, 1-4.
  13. Bhat, B. V., & Ravikumar, S. (2020). Challenges in   Neonatal    COVID-19 Infection. The Indian Journal of Pediatrics, 1-2.
  14. Bhat, B. V., & Ravikumar, S. (2020). Challenges in Neonatal COVID-19 Infection. The Indian Journal of Pediatrics, 1-2.‏
  15. Grainger, R., Machado, P. M., & Robinson, P. C. (2021). Novel coronavirus disease-2019 (COVID-19) in people with rheumatic disease: epidemiology and outcomes. Best Practice & Research Clinical Rheumatology, 35(1), 101657.‏
  16. Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., ... & Tian, D. S. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases.
  17. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in     Wuhan,      The lancet, 395(10223), 497-506.
  18. Chau, A. S., Weber, A. G., Maria, N. I. Narain, S., Liu, A., Hajizadeh, N., ... & Kaplan, B. (2020). The longitudinal immune response to coronavirus disease 2019: chasing the cytokine storm. Arthritis & Rheumatology.
  19. De Benedetti, F., Brogan, P., Grom, A., Quartier, P., Schneider, R., De Graaf, K., ... & de Min, C. (2019). OP0204 EMAPALUMAB, an interferon gamma (IFN-Y)-BLOCKING monoclonal antibody, in patients with macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (SJIA).
  20. Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., & Rezaei, N. (2019). A meta-analysis of pro- inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of psychiatric research, 115, 90-102.
  21. Satış, H., Özger, H. S., Yıldız, P. A., Hızel, K., Gulbahar, Ö., Erbaş, G., & Tufan, A. (2021). Prognostic value of interleukin-18 and its association with other inflammatory markers and disease      severity       in       COVID- 19. Cytokine, 137, 155302.
  22. Kaplanski, G. (2018). Interleukin‐18: Biological properties and role in disease pathogenesis. Immunological reviews, 281(1), 138-153.
  23. Ha, C. T., Li, X., Fu, D., & Xiao, M. (2016). Circulating IL-18 binding protein (IL- 18BP) and IL-18 as dual biomarkers of total- body irradiation   in    Radiation Research, 185(4), 375-383.
  24. Hotchkiss, R. S., Moldawer, L. L., Opal, S. M., Reinhart, K., Turnbull, I. R., & Vincent, J.L. (2016). Sepsis and septic shock. Nature reviews Disease primers, 2(1), 1-21.
  25. Slaats, J., ten Oever, J., van de Veerdonk, F. L., & Netea, M. G. (2016). IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS pathogens, 12(12), e1005973.
  26. Kermali, M., Khalsa, R. K., Pillai, K., Ismail, Z., & Harky, A. (2020). The role of biomarkers in diagnosis of COVID-19–A systematic review. Life sciences, 254, 117788.
  27. Kaplanski, G. (2018). Interleukin‐18: Biological properties and role in disease pathogenesis.Immunological reviews, 281(1), 138-153.‏
  28. Ahmed, A., Ali, A., & Hasan, S. (2020). Comparison of epidemiological variations in COVID-19 patients inside and outside of China—a meta-analysis. Frontiers in public health, 8, 193.
  29. Rodriguez-Morales, A. J., Cardona-Ospina, J. A., Gutiérrez-Ocampo, E., Villamizar-Peña, R., Holguin-Rivera, Y., Escalera-Antezana, J.P., & Sah, R. (2020). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel medicine and infectious disease, 34, 101623.
  30. Liang, W. H., Guan, W. J., Li, C. C., Li, Y. M., Liang, H. R., Zhao, Y., & He, J. X. (2020). Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non- epicentre): a    nationwide    analysis    of China. European Respiratory Journal, 55(6).
  31. CDC Covid-19 Response Team. Chow, N., Fleming-Dutra, K., Gierke, R., & Ussery, E. (2020). Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. Morbidity and Mortality Weekly Report, 69(13), 382-386.
  32. Thakur, B., Dubey, P., Benitez, J., Torres, J. P., Reddy, S., Shokar, N., ... & Dwivedi, A. K. (2021). A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Scientific reports, 11(1), 1-13.
  33. Cho, S. I., Yoon, S., & Lee, H. J. (2021). Impact of comorbidity burden on mortality in patients with COVID-19 using the Korean health insurance database. Scientific reports, 11(1), 1-9.
  34. Vardavas, C. I., & Nikitara, K. (2020). COVID-19 and smoking: A systematic review of the evidence. Tobacco induced diseases, 18.
  35. Reddy, R. K., Charles, W. N., Sklavounos, A., Dutt, A., Seed, P. T., & Khajuria, A. (2021). The effect of smoking on COVID‐19 severity: A systematic review and meta‐ Journal of Medical Virology, 93(2).
  36. Patanavanich, R., & Glantz, S. A. (2020). Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine and Tobacco Research, 22(9), 1653-1656.
  37. Farsalinos, K., Bagos, P. G., Giannouchos, T., Niaura, R., Barbouni, A., & Poulas, K. (2021). Smoking prevalence among hospitalized COVID-19 patients and its association with disease severity and mortality: an expanded re- analysis of a recent publication. Harm Reduction Journal, 18(1), 1-9.
  38. SaadatianElahi, M., Amour, S., Elias, C., Henaff, L., Dananché, C., & Vanhems, P. (2021). Tobacco smoking and severity of COVID‐19: Experience from a hospital based prospective cohort study in Lyon France. Journal of Medical Virology.
  39. Qu, R., Ling, Y., Zhang, Y. H. Z., Wei, L. Y., Chen, X., Li, X. M., & Wang, Q. (2020). Platelet‐to‐lymphocyte ratio is associated with prognosis in patients with coronavirus disease‐ Journal of medical virology, 92(9), 1533-1541.
  40. Dujardin, R. W., Hilderink, B. N., Haksteen, W. E., Middeldorp, S., Vlaar, A. P., Thachil, J., & Juffermans, N. P. (2020). Biomarkers for the prediction of venous thromboembolism in critically ill COVID-19 patients. Thrombosis research, 196, 308-312.
  41. Zhao, J., Zhao, S., Ou, J., Zhang, J., Lan, W., Guan, W., & Zhang, Q. (2020). COVID-19: Vaccine Development Updates. Frontiers in immunology, 11, 3435.
  42. Lippi, G., Plebani, M., & Henry, B. M. (2020). Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clinica chimica acta, 506, 145-148.
  43. Guo, J., Huang, F., Liu, J., Chen, Y., Wang, W., Cao, B., & Jiang, C. (2015). The serum profile of hypercytokinemia factors identified in H7N9-infected patients can predict fatal outcomes. Scientific reports, 5(1), 1-10.
  44. Valero, N., Mosquera, J., Torres, M., Duran, A., Velastegui, M., Reyes, J., & Veliz, T.(2019) Increased serum ferritin and interleukin-18 levels in children with de Braz J Microbiol ;50:649-56.
  45. Kerget, B., Kerget, F., Aksakal, A., Aşkın, S., Sağlam, L., & Akgün, M. (2021). Evaluation of alpha defensin, IL‐1 receptor antagonist, and IL‐18 levels in COVID‐19 patients with macrophage activation syndrome and acute respiratory distress syndrome. Journal of Medical Virology, 93(4), 20