Assessment of SH3YL1 protein as a marker for diabetic nephropathy in type 2 diabetes mellitus

Document Type : Original Article

Authors

1 Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt

2 Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt

Abstract

The goal of this study was to explore the association between Src homology 3 domain of SH3 domain containing Ysc84-like 1 (SH3YL1) protein and diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM). The study included 90 participants, 60 patients with T2DM all recruited from Outpatients Clinic and Internal Medicine Inpatient Department, Beni-Suef University Hospital; and 30 apparently healthy controls. Patients were sub-divided into group I: 20 patients with no albuminuria, group II: 20 patients with microalbuminuria and group III: 20 patients with macroalbuminuria. All participants were subjected to full history taking, routine laboratory investigations and serum SH3YL1 analysis using enzyme-linked immunosorbent (ELISA) assay. Serum SH3YL1  was significantly higher in T2DM patients (5.69 ± 1.6 ng/ml) versus controls (3.76 ±0.80 ng/ml) (p<0.001).There was  statistical significant difference with p <0.05 between cases of group I, and each of group II, and group III as regards SH3YL1 level with lowest mean among group I. There was statistical significant positive correlation between SH3YL1 level and each of fasting blood glucose, 2hours postprandial, glycated hemoglobin, urea, creatinine, albuminuria, total cholesterol and triglycerides. SH3YL1 showed sensitivity of (88.3%) and specificity of (53.3%) at cut off value (3.85 ng/mL) among T2DM patients versus controls (p<0.001). Moreover, sensitivity of (70%, 90%, and 90%) and specificity of (56.7%, 70%, and 86.7%) at cutoff (4 ng/mL, 4.45 ng/mL, and 4.65 ng/mL) was found among groups I, II and III versus control group (p= 0.01, <0.001 and <0.001), respectively. In conclusion, SH3YL1 serum level revealed statistically significant increase among T2DM patients and showed statistical difference between the studied no albuminuria, microalbuminuria and macroalbuminuria groups. Our study suggests SH3YL1 as a promising diagnostic and prognostic marker among DN patients.

Keywords

Main Subjects


  1. Nasri, H., & Rafieian-Kopaei, M. (2015). Diabetes mellitus and renal failure: Prevention and management. Journal of research in medical sciences 20(11), 1112.
  2. Collins, A. J., Foley, R. N., Herzog, C., Chavers, B., Gilbertson, D., Ishani, A., & Agodoa, L. (2011). US renal data system 2010 annual data report. American Journal of Kidney Diseases, 57(1), A8.
  3. Byrne, C., Caskey, F., Castledine, C., Dawnay, A., Ford, D., Fraser, S., & Williams, A. J. (2018). UK Renal Registry. Nephron, 139.
  4. Andrésdóttir, G., Jensen, M. L., Carstensen, B., Parving, H. H., Hovind, P., Hansen, T. W., & Rossing, P. (2015). Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney international, 87(2), 417-426.
  5. Hodel, N. C., Hamad, A., Reither, K., Kasella, I. M., Abdulla, S., Schoetzau, A., & Mayr, M. (2021). Comparison of two different semiquantitative urinary dipstick tests with albumin-to-creatinine ratio for screening and classification of albuminuria according to KDIGO. A diagnostic test study. Diagnostics, 11(1), 81.
  6. Oates, P. J. (2002). Polyol pathway and diabetic peripheral neuropathy. International review of neurobiology, 50, 325-392.
  7. Forbes, J. M., Cooper, M. E., Oldfield, M. D., & Thomas, M. C. (2003). Role of advanced glycation end products in diabetic nephropathy. Journal of the American Society of Nephrology, 14(suppl 3), S254-S258.
  8. Manda, G., Checherita, A. I., Comanescu, M. V., & Hinescu, M. E. (2015). Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators of Inflammation,2015:604208.doi:10.1155/2015/604208.
  9. American Diabetes Association. (2019). Microvascular complications and foot care: standards of medical care in diabetes. Diabetes Care, 42(Supplement_1), S124-S138.
  10. Jerums, G., Panagiotopoulos, S., Premaratne, E., & MacIsaac, R. J. (2009). Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nature Reviews Nephrology, 5(7), 397-406.
  11. An, J. H., Cho, Y. M., Yu, H. G., Jang, H. C., Park, K. S., Kim, S. Y., & Lee, H. K. (2009). The clinical characteristics of normoalbuminuric renal insufficiency in Korean type 2 diabetic patients: a possible early stage renal complication. Journal of Korean medical science, 24(Suppl 1), S75-S81.
  12. Gluhovschi, C., Gluhovschi, G., Petrica, L., Timar, R., Velciov, S., Ionita, I., & Timar, B. (2016). Urinary biomarkers in the assessment of early diabetic nephropathy. Journal of diabetes research, 2016:4626125. doi:10.1155/2016/4626125.
  13. Pawson, T., Gish, G. D., & Nash, P. (2001). SH2 domains, interaction modules and cellular wiring. Trends in cell biology, 11(12), 504-511.
  14. Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., & Soltoff, S. (1991). Oncogenes and signal transduction. Cell, 64(2), 281-302.
  15. Shrestha, P., Yun, J. H., & Lee, W. T. (2010). Expression, Purification and NMR studies of SH3YL1 SH3 domain. Journal of the Korean Magnetic Resonance Society, 14(2), 105-116.
  16. Aoki, N., Ito, K., & Ito, M. (2000). A novel mouse gene, SH3YL1, is expressed in the anagen hair follicle. Journal of investigative dermatology, 114(5), 1050-1056.
  17. Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in cell biology, 3(1), 8-13.
  18. Hasegawa, J., Tokuda, E., Tenno, T., Tsujita, K., Sawai, H., Hiroaki, H. & Itoh, T. (2011). SH3YL1 regulates dorsal ruffle formation by a novel phosphoinositide-binding domain. Journal of Cell Biology, 193(5), 901-916.
  19. Auten, R. L., & Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric research, 66(2), 121-127.
  20. Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., & Griendling, K. K. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation research, 105(3), 249-259.
  21. Yoo, J. Y., Cha, D. R., Kim, B., An, E. J., Lee, S. R., Cha, J. J., & Bae, Y. S. (2020). LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Reports, 33(3), 108245.
  22. World Medical Association (2008) Declaration of Helsinki: ethical principles for medical research involving human subjects. The 59th WMA General Assembly, Seoul, South Korea.
  23. Filla, L. A., & Edwards, J. L. (2016). Metabolomics in diabetic complications. Molecular BioSystems, 12(4), 1090-1105.
  24. Conserva, F., Gesualdo, L., & Papale, M. (2016). A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and post-translational modifications. Journal of diabetes research, 2016:7934504. doi:10.1155/2016/7934504.
  25. Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., & Holman, R. R. (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373(3), 232-242.
  26. Choi, G. S., Min, H. S., Cha, J. J., Lee, J. E., Ghee, J. Y., Yoo, J. A., & Cha, D. R. (2021). SH3YL1 protein as a novel biomarker for diabetic nephropathy in type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 31(2), 498-505.
  27. Fiseha, T. (2015). Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients. Biomarker research, 3(1), 1-7.