Detection of cerebral microbleeds by Susceptibility-Weighted-MR-Imaging in elderly population in comparison with cognitive tests

Document Type : Original Article

Authors

1 Faculty of Medicine, Beni-Suef University, Egypt , Radiology department.

2 Faculty of medicine , 6 October University, Radiology department.

3 Faculty of medicine, Beni-Suef University, Egypt , Neurology department.

Abstract

Background: Neuroimaging results related to cerebral microbleeds are becoming more well known. Significant advancements have been made in recent years, notably in the creation of improved MRI detection technologies and their application to various diagnostic investigations of neuropsychological illnesses. The purpose of this research was to determine if susceptibility weighted imaging can identify cerebral microbleeds in older people and determine whether these microbleeds were associated with cognitive dysfunction. Results: This study was an observational cross-sectional study performed on 58 elderly subjects above the age of 50. Cognitive functions for the included subjects were assessed using Paced Auditory Serial Addition Test (PASAT), Benton Visual Retention test (BVRT) and Paired Associate Learning test (PALT). All included subjects underwent routine MRI and susceptibility weighted images. The mean values for PALT, BVRT, PASAT scores were 10.2±3.2, 12.7±3.4, and 27.9±10.9 respectively. There were statistically significant negative correlations between the scores of PALT, BVRT, PASAT, and lobar (P-value <0.001 in all tests) and total number of microbleeds (P-value= 0.005, 0.016, 0.001 respectively). In addition, there was a statistically significant negative correlation between PASAT score and number of infra-tentorial microbleeds (P-value= 0.022). Conclusions: The occurrence of cerebral microbleeds detected by Susceptibility-Weighted-MR-Imaging had a significant impact on cognitive function. The Susceptibility-Weighted-MR-Imaging can be used as a screening for early detection of microbleeds in patients with impaired cognitive functions and so, we can avoid the consequences of CMBs specially in male subjects with associated comorbidities as diabetes and hypertension.

Keywords

Main Subjects


  1. Wang M, Hu HY, Wang ZT, Ou YN, Qu Y, Ma YH, Dong Q, Tan L and Yu JT (2021). Association of cerebral microbleeds with risks of cognitive impairment and dementia: a systematic review and meta-analysis of prospective studies. Brain Disorders2: 100010.
  2. Abou Elmaaty AA and Zarad CA (2020). Role of magnetic susceptibility-weighted imaging in characterization of cerebral microbleeds in acute ischemic stroke Egyptian obese patients. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery56: 1-9.
  3. Caunca MR, De Leon-Benedetti A, Latour L, Leigh R and Wright CB (2019). Neuroimaging of cerebral small vessel disease and age-related cognitive changes. Frontiers in aging neuroscience11: 145.
  4. Liu S, Utriainen D, Chai C, Chen Y, Wang, L, Sethi SK, Xia S and Haacke EM (2019). Cerebral microbleed detection using susceptibility weighted imaging and deep learning. Neuroimage198: 271-282.
  5. Spaan PE, Raaijmakers JG and Jonker C (2005). Early assessment of dementia: the contribution of different memory components. Neuropsychology19(5): 629.
  6. Manna CBG, Filangieri CM, Borod JC, Alterescu K and Bender HA (2011). Benton visual retention test. Encyclopedia of clinical neuropsychology. New York: Springer, 392-4.
  7. Nikravesh M, Jafari Z, Mehrpour M, Kazemi R, Shavaki YA, Hossienifar S and Azizi MP (2017). The paced auditory serial addition test for working memory assessment: Psychometric properties. Medical journal of the Islamic Republic of Iran31: 61.
  8. Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CL, Wardlaw JM and Salman RAS (2009). Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke40(1): 94-99.
  9. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jäger HR and Werring DJ (2009). The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology73(21): 1759-1766.
  10. Kim KW, MacFall JR and Payne ME (2008). Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biological psychiatry64(4): 273-280.
  11. Puy L, Pasi M, Rodrigues M, Van Veluw SJ, Tsivgoulis G, Shoamanesh A and Cordonnier C (2021). Cerebral microbleeds: from depiction to interpretation. Journal of Neurology, Neurosurgery & Psychiatry92(6): 598-607.
  12. Li L, Wu DH, Li HQ, Tan L, Xu W, Dong Q, Tan L, Yu JT and Alzheimer’s Disease Neuroimaging Initiative (2020). Association of cerebral microbleeds with cognitive decline: a longitudinal study. Journal of Alzheimer's Disease75(2): 571-579.
  13. Jiménez-Balado J, Riba-Llena I, Abril O, Garde E, Penalba A, Ostos E, Maisterra O, Montaner J, Noviembre M, Mundet X and Ventura O (2019). Cognitive impact of cerebral small vessel disease changes in patients with hypertension. Hypertension73(2): 342-349.
  14. Paradise M, Seruga A, Crawford JD, Chaganti J, Thalamuthu A, Kochan NA, Brodaty H, Wen W and Sachdev PS (2019). The relationship of cerebral microbleeds to cognition and incident dementia in non-demented older individuals. Brain Imaging and Behavior13(3): 750-761.
  15. Qiu C, Cotch MF, Sigurdsson S, Jonsson PV, Jonsdottir MK, Sveinbjrnsdottir S, Eiriksdottir G, Klein R, Harris TB, Van Buchem MA and Gudnason V (2010). Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology75(24): 2221-2228.
  16. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, Breteler MM and Vernooij MW (2012). Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology78(5): 326-333.
  17. Miwa K, Tanaka M, Okazaki S, Yagita Y, Sakaguchi M, Mochizuki H and Kitagawa K (2014). Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors. Neurology83(7): 646-653.
  18. Chiang GC, Hernandez JC, Kantarci K, Jack CR, Weiner MW and Alzheimer's Disease Neuroimaging Initiative (2015). Cerebral microbleeds, CSF p-tau, and cognitive decline: significance of anatomic distribution. American Journal of Neuroradiology36(9): 1635-1641.
  19. Haller S, Bartsch A, Nguyen D, Rodriguez C, Emch J, Gold G, Lovblad KO and Giannakopoulos P (2010). Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology257(3): 764-773.
  20. Fagerholm ED, Hellyer PJ, Scott G, Leech R and Sharp DJ (2015). Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain138(6): 1696-1709.
  21. Nannoni S, Ohlmeier L, Brown RB, Morris RG, MacKinnon AD, Markus HS and DNA Lacunar 2 investigators (2022). Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease. International Journal of Stroke17(4): 415-424.
  22. van Norden AG, van den Berg HA, de Laat KF, Gons RA, van Dijk EJ and de Leeuw FE (2011). Frontal and temporal microbleeds are related to cognitive function: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. Stroke42(12): 3382-3386.
  23. Ahn SJ, Anrather J, Nishimura N and Schaffer CB (2018). Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation. Stroke49(7): 1719-1726.
  24. Wardlaw JM, Smith C and Dichgans M (2013). Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. The Lancet Neurology12(5): 483-497.
  25. Charidimou A, Imaizumi T, Moulin S, Biffi A, Samarasekera N, Yakushiji Y, Peeters A, Vandermeeren Y, Laloux P, Baron JC and Hernandez-Guillamon M (2017). Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: a meta-analysis. Neurology89(8): 820-829.
  26. Sakuta K, Yaguchi H, Sato T, Komatsu T, Sakai K, Mitsumura H, Matsushima S and Iguchi Y (2020). The impact of cerebral microbleeds presence on outcome following minor stroke treated with antiplatelet therapy. Frontiers in neurology11: 522.
  27. Diker S, Gelener P, Eker A, Kaymakamzade B, Mut S, Erem A and Balyemez U (2022). Association between cerebral microbleeds and inflammatory biomarkers in patients with ischemic stroke. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery58(1): 1-9.
  28. Graff-Radford J, Botha H, Rabinstein AA, Gunter JL, Przybelski SA, Lesnick T, Huston J, Flemming KD, Preboske GM, Senjem ML and Brown RD (2019). Cerebral microbleeds: prevalence and relationship to amyloid burden. Neurology92(3): 253-262.
  29. Elmståhl S, Ellström K, Siennicki‐Lantz A and Abul‐Kasim K (2019). Association between cerebral microbleeds and hypertension in the Swedish general population “Good Aging in Skåne” study. The Journal of Clinical Hypertension21(8): 1099-1107.
  30. Yu M, Jia Y, Yang D, Zhang R, Jiang Y, Zhang G, Qiao H, Han H, Shen R, Ning Z and Zhao X (2022). Association between Hemoglobin A1c and Cerebral Microbleeds in Community‐based Stroke‐free Individuals: A cross‐sectional study. Diabetes/Metabolism Research and Reviews, 38: 3557.
  31. Cordonnier C, Al-Shahi Salman R and Wardlaw J (2007). Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain130(8): 1988-2003.
  32. Qiu C, Sigurdsson S, Zhang Q, Jonsdottir MK, Kjartansson O, Eiriksdottir G, Garcia ME, Harris TB, van Buchem MA, Gudnason V and Launer LJ (2014). Diabetes, markers of brain pathology and cognitive function: the Age, Gene/Environment Susceptibility–Reykjavik Study. Annals of neurology75(1): 138-146.
  33. Xu CX, Xu H, Yi T, Yi XY and Ma JP (2021). Cerebral Microbleed Burden in Ischemic Stroke Patients on Aspirin: Prospective Cohort of Intracranial Hemorrhage. Frontiers in Neurology12.
  34. Nagaraja N, Farooqui A, Zahid AB and Kaur S (2021). Factors associated with the presence of cerebral microbleeds and its influence on outcomes of stroke not treated with alteplase. Clinical Neurology and Neurosurgery207: