Evaluation of miR-181a in Diabetes Mellitus Type-2 and its relation to Diabetic Nephropathy

Document Type : Original Article

Authors

1 Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Egypt

2 Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Egypt

3 Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Egypt.

Abstract

A chronic consequence of diabetes mellitus (DM), diabetic nephropathy (DN) typically advances to end-stage renal disease (ESRD). However, the pathophysiology of DN is not fully understood. It has been revealed that several miRNAs have been considered as risk or protective factors in DN.  Inflammation is a key determining factor in the development and progression of diabetes. The aim of the current study was to investigate the association of serum miR-181a, serum, and urine IL-6, and IL- 18 with DN. miR-181a was estimated by RT- qRT-PCR, IL-6, and IL- 18 were estimated by enzyme-linked immunosorbent assay (ELISA). 120 patients were divided into three groups; Group 1: 40 DM type 2 without DN, group 2: 40 DM type 2 with diabetic DN, and group 3: 40 control patients. Group 2 was further subdivided into 20 macroalbuminuria and 20 microalbuminuria patients. When DN patients were compared to other groups, their levels of miR-181a, IL-6, and IL-18 increased significantly. Higher levels of miR-181a in patients with macroalbuminuria than patients with microalbuminuria in DN group. Serum miR-181a significantly positively correlated with fasting insulin, fasting glucose, HOMA IR, ACR, serum IL-6 and BMI in DN group. The ROC curve analysis revealed high significant specificity and sensitivity of serum miR-181a, serum, and urine IL-6, and IL-18 suggesting their possible utility for the primary diagnosis of DN in DM. It is concluded that miR-181a may prove to be a valuable biomarker for DN prognostic and diagnostic applications

Keywords

Main Subjects


  1. Sagoo, M. K. and L. Gnudi (2020). "Diabetic nephropathy: an overview." Diabetic Nephropathy: Methods and Protocols: 3-7.
  2. DeFronzo, R. A., et al. (2015). "Type 2 diabetes mellitus." Nature reviews Disease primers 1(1): 1-22.
  3. Cirillo, F., et al. (2019). "Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play a role?" International journal of molecular sciences 20(12): 2922.
  4. Selby, N. M. and M. W. Taal (2020). "An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines." Diabetes, Obesity and Metabolism 22: 3-15.
  5. Liang, X. and W. Xu (2020). "miR-181a-5p regulates the proliferation and apoptosis of glomerular mesangial cells by targeting KLF6." Exp Ther Med 20(2): 1121-1128.
  6. Liu, D., et al. (2022). "miR-181a Improved Renal Inflammation by Targeting TNF-α in a Diabetic Nephropathy Animal Model." Nephron 146(6): 637-646.
  7. Zhou, B., et al. (2012). "Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity." Diabetologia 55: 2032-2043.
  8. Zhang, J., et al. (2018). "Downregulation of miR-181a alleviates renal fibrosis in diabetic nephropathy mice." International Journal of Clinical and Experimental Pathology 11(8): 4004.
  9. Zha, F., et al. (2019). "Long non-coding RNA MEG3 promotes fibrosis and inflammatory response in diabetic nephropathy via miR-181a/Egr-1/TLR4 axis." Aging (Albany NY) 11(11): 3716.
  10. Williams, M. D. and G. M. Mitchell (2012). "MicroRNAs in insulin resistance and obesity." Journal of Diabetes Research 2012.
  11. Mononen, N., et al. (2019). "Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes." Scientific reports 9(1): 8887.
  12. Gross, J. L., et al. (2005). "Diabetic Nephropathy: Diagnosis, Prevention, and Treatment." Diabetes Care 28(1): 164-176.
  13. Tziomalos, K. and V. G. Athyros (2015). "Diabetic nephropathy: new risk factors and improvements in diagnosis." The review of diabetic studies: RDS 12(1-2): 110.
  14. Georgakis MK, Malik R, Li X, et al. Genetically downregulated interleukin-6 signaling is associated with a favorable cardiometabolic profile: a phenome-wide association study. Circulation. 2021;143(11):1177–1180.  [Crossref][PubMed] [Web of Science ®][Google Scholar].
  15. Yasuaki Hirooka and Yuji Interleukin-18 in Inflammatory Kidney Disease Med., 01 March 2021
    Sec. Nephrology Volume 8 - 2021 | https://doi.org/10.3389/fmed.2021.639103.
  16. Jordan M Kraaijenhof,Matthias von Herrath, Kees Kornelis Hovingh  &Bernt Johan von Scholten Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: mechanisms and therapeutic perspectives Pages 377-389 | Received 11 Sep 2021, Accepted 21 Feb 2022, Published online: 01 Mar 2022.Cite this article https://doi.org/10.1080/ 1744666X.2022.2045952
  17. Hua SuChun-Tao Lei, and Chun Zhang: Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update, Front Immunol. 2017; 8: 405. PMCID: PMC5399081. PMID: 28484449. Published online 2017 Apr 21. doi: 3389/fimmu.2017.00405.
  18. Zhang, Q. Zheng, Y. Wang et al., “Renoprotective effect of the recombinant anti-IL-6R fusion proteins by inhibiting JAK2/STAT3 signaling pathway in diabetic nephropathy,” Frontiers in Pharmacology, vol. 12, p. 681424, 2021.
  19. Chen B, Wu M, Zang C, Li Y, Xu Z. Association between IL-6 polymorphisms and diabetic nephropathy risk: A meta-analysis. Am J Med Sci (2019) 358(5):363–73. doi: 10.1016/j.amjms.2019.07.011.
  20. Wu R, Liu X, Yin J, Wu H, Cai X, Wang N, et al. IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metabolism (2018) 83:18–24. doi: 10.1016/j.metabol.2018.01.002.
  21. Zhang N, Zheng Q, Wang Y, Lin J, Wang H, Liu R, et al. Renoprotective effect of the recombinant anti-IL-6R fusion proteins by inhibiting JAK2/STAT3 signaling pathway in diabetic nephropathy. Front Pharmacol (2021) 12:681424. doi: 10.3389/fphar.2021.681424.
  22. Ishikado A, Shinjo T, Yokomizo H, Maeda Y, Park K, Qi W, et al. 309-or: IGF-1 receptors, not insulin receptors, on mesangial cells are accelerating mesangial expansion and albuminuria in streptozotocin-induced diabetic mice. Diabetes (2020) 69(Supplement_1). doi: 10.2337/db20-309.
  23. Cui J, Zhang X, Guo C, Zhang L. The association of interieukin-6 polymorphism (rs1800795) with microvascular complications in type 2 diabetes mellitus. Bioscience Rep (2020) 40(10). doi: 10.1042/bsr20201105. 37-
  24. Hadeel A. Al-Rawaf, 1 Ahmad H. Alghadir, 2 and Sami A. Gabr Expression of Circulating MicroRNAs and Myokines and Interactions with Serum Osteopontin in Type 2 Diabetic Patients with Moderate and Poor Glycemic Control: A Biochemical and Molecular StudyBiomed Res Int.2021; 2021: 7453000. Published online 2021 Dec 7. doi: 1155/2021/7453000 PMCID: PMC8670937PMID: 34917685.
  25. Hong Liu miR-181a Improved Renal Inflammation by Targeting TNF-α in a Diabetic Nephropathy Animal Model;Nephron(2022) 146 (6): 637–646. https://doi.org/10.1159/00052505Volume 146, Issue 6 December 2022.
  26. Emanuela Zaharieva,1 Zdravko Kamenov,1 Tsvetelina Velikova,2 Adelina Tsakova,3 Yosif El-Darawish,4 and Haruki Okamura Interleukin-6,18 serum level is elevated in type 2 diabetes and latent autoimmune diabetes. Endocr Connect.2018 Jan; 7(1): 179–185.Published online 2017 Dec 7. doi: 1530/EC-17-0273.PMCID: PMC577667.PMID: 29217651
  27. LaPierre, M.P.; Stoffel, M. Micrornas as stress regulators in pancreatic beta cells and diabetes.  Metab.2017, 6, 1010–1023.
  28. Anker S.D., Butler J., Filippatos G., Khan M.S., Marx N., Lam C.S.P., Schnaidt S., Ofstad A.P., Brueckmann M., Jamal W., et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients With Heart Failure by Baseline Diabetes Status: Results From the EMPEROR-Reduced Trial. Circulation. 2021;143:337–349. doi: 10.1161/CIRCULATIONAHA.120.051824. 
  29. Tuttle K.R., Agarwal R., Alpers C.E., Bakris G.L., Brosius F.C., Kolkhof P., Uribarri J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248–260. doi: 10.1016/j.kint.2022.05.012.
  30. Tang S.C.W., Yiu W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020;16:206–222. doi: 10.1038/s41581-019-0234-4.
  31. Li, B., Fan, J., and Chen, N. (2018). A novel regulator of type II diabetes: MicroRNAs. Trends Endocrinol. Metab. 29, 380–388. doi: 10.1016/j.tem.2018.03.019.
  32. Sheinerman K, Tsivinsky V, Mathur A, Kessler D, Shaz B, Umansky S. Ageand sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY). 2018;10(10):3017–41.
  33. Karlsson IK, Lehto K, Gatz M, Reynolds CA, Dahl Aslan AK. Agedependent efects of body mass index across the adult life span on the risk of dementia: a cohort study with a genetic approach. BMC Med. 2020;18(1):131.
  34. Calculator, B. "About BMI for Adults”.
  35. Salgado, A. L., et al. (2010). "Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals." Arq Gastroenterol 47(2):165-169.
  36. Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method." methods 25(4): 402-408.