Estimation of the post-mortem interval using microRNA in the heart in aluminum phosphide deaths

Document Type : Original Article

Authors

1 forensic medicine and clinical toxicology department, Faculty of medicine, Beni-suef university, Beni-suef

2 forensic medicine and clinical toxicology ,faculty of medicine, cairo university- Egypt

Abstract

Background: The assessment of the postmortem interval (PMI) represents one of the major challenges in forensic pathology. Because of their stability miRNAs, are anticipated to be helpful in forensic research. Objective: to see if estimation of PMI is possible using miRNA-122 expression levels in the heart samples from aluminum phosphide toxicity (Alpt). Methods: This was a cross sectional study on 60 post-mortem samples (heart tissues) collected at different intervals during forensic autopsies. The two groups were allocated equally according to the cause of death into Group I (control, n꓿30): Deaths caused by other than toxicity, and Group II (cases, n꓿30): Deaths due to Alpt. miRNA- 122 expression levels were measured in heart tissues at different PMI using RT-Q PCR.  Results: miRNA-122 level in Alp deaths was up regulated with statistically significant difference. There was positive correlation between miRNA-122 with PMI. Conclusion: The results of this study concluded that the PMI can be calculated using the degree to which particular miRNA-122.

Keywords

Main Subjects


  1. Brooks, J. W. (2016). Postmortem changes in animal carcasses and estimation of the postmortem interval. Veterinary pathology, 53(5), 929-940.‏
  2. Wilson, S. J., & Christensen, A. M. (2017). A test of the citrate method of PMI estimation from skeletal remains. Forensic science international, 270, 70-75.‏
  3. van den Berge, M., Wiskerke, D., Gerretsen, R. R. R., Tabak, J., & Sijen, T. (2016). DNA and RNA profiling of excavated human remains with varying postmortem intervals. International journal of legal medicine, 130, 1471-1480.‏
  4. van den Berge, M., Wiskerke, D., Gerretsen, R. R. R., Tabak, J., & Sijen, T. (2016). DNA and RNA profiling of excavated human remains with varying postmortem intervals. International journal of legal medicine, 130, 1471-1480.‏
  5. Yadav, D.; Bhattacharyya, R and Banerjee, D. (2021). Acute aluminum phosphide poisoning: The menace of phosphine exposure. Clinica Chimica Acta, 520, 34-42.‏
  6. Wang, T., Feng, Y., Sun, H., Zhang, L., Hao, L., Shi, C., ... & Zou, Z. (2012). miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. The American journal of pathology, 181(6), 1911-1920.‏
  7. Saleh, A. A., & Makhlof, M. G. (2018). Outcome of Toxicity and Mortality Predictors of Aluminum Phosphide Poisoning in Fayoum Governorate, Egypt. Zagazig Journal of Forensic Medicine, 16(2), 40-52.
  8. Chan YH (2003a): Biostatistics102: Quantitative Data – Parametric & Non-parametric Tests. Singapore Med J.;44(8): 391-396.
  9. Chan YH (2003b): Biostatistics 103: Qualitative Data –Tests of Independence. Singapore Med J.;44(10): 498-503.
  10. Chan YH (2003c): Biostatistics 104: Correlational Analysis. Singapore Med J.;44(12): 614-619.
  11. Risoluti, R., Canepari, S., Frati, P., Fineschi, V., & Materazzi, S. (2019). “2 n Analytical Platform” To Update Procedures in Thanatochemistry: Estimation of Post Mortem Interval in Vitreous Humor. Analytical chemistry91(11), 7025-7031.‏
  12. Henssge, C., & Madea, B. (2007). Estimation of the time since death. Forensic science international, 165(2-3), 182-184.‏
  13. Gouda, A. S., El-Nabarawy, N. A., & Ibrahim, S. F. (2018). Moringa oleifera extract (Lam) attenuates Aluminium phosphide-induced acute cardiac toxicity in rats. Toxicology reports5, 209-212.‏
  14. Anand, R.; Binukumar, B. K and Gill, K. D. (2011). Aluminum phosphide poisoning: an unsolved riddle. Journal of applied toxicology31(6), 499-505.‏
  15. Maiese, A., Scatena, A., Costantino, A., Di Paolo, M., La Russa, R., Turillazzi, E., ... & Fineschi, V. (2021). MicroRNAs as useful tools to estimate time since death. a systematic review of current literature. Diagnostics11(1), 64.‏
  16. Lv, Y. H.; Ma, J. L.; Pan, H.; Zeng, Y.; Tao, L.; Zhang, H.; ... and Chen, L. (2017). Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Science, Medicine, and Pathology, 13(1), 20-27.
  17. Shi,, Zhang, Z., Yin, Q., Fu, C., Barszczyk, A., Zhang, X., ... & Yang, D. (2021). Cardiac‐specific overexpression of miR‐122 induces mitochondria‐dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. Journal of Cellular and Molecular Medicine, 25(11), 5326-5334.‏
  18. Na, J. Y. (2020). Estimation of the post-mortem interval using microRNA in the bones. Journal of Forensic and Legal Medicine75, 102049.‏
  19. Mathai, A., & Bhanu, M. S. (2010). Acute aluminium phosphide poisoning: Can we predict mortality? Indian journal of anaesthesia, 54(4), 302.‏
  20. Sheta, A. A., El-Banna, A. S., Elmeguid, R. A., Mohamed, H. E., & Gad, N. H. (2019). A study of the predictive factors of mortality in acute poisoning with aluminum phosphide with special reference to echocardiography and SOFA score. Environmental Science and Pollution Research26, 33135-33145.‏
  21. Nagao, Y., Hisaoka, M., Matsuyama, A., Kanemitsu, S., Hamada, T., Fukuyama, T., ... & Hashimoto, H. (2012). Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Modern Pathology, 25(1), 112-121.
  22. Mundalil Vasu, M., Anitha, A., Thanseem, I., Suzuki, K., Yamada, K., Takahashi, T., ... & Mori, N. (2014). Serum microRNA profiles in children with autism. Molecular autism, 5(1), 1-9.‏
  23. Agoro, E. S., Okoye, F. B. C., Azuonwu, O., & Ebiere, N. E. (2017). The Effect of Age and Sex on Vitreous Humour Chemistry and Postmortem Interval (PMI). Indian Journal of Forensic Medicine & Toxicology, 11(2).
  24. Fais, P., Mazzotti, M. C., Teti, G., BoscoloBerto, R., Pelotti, S., & Falconi, M. (2018). HIF 1α protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue. Journal of anatomy, 232(6), 1031-1037.‏
  25. Tong, Z., Jiang, B., Wu, Y., Liu, Y., Li, Y., Gao, M., ... & Xiao, X. (2015). MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. International journal of molecular sciences16(7), 14511-145.‏
  26. Wei, C., Li, L., Kim, I. K., Sun, P., & Gupta, S. (2014). NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free radical research48(3), 282-291.‏
  27. Hou, Y., Sun, Y., Shan, H., Li, X., Zhang, M., Zhou, X., ... & Lu, Y. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical science monitor: international medical journal of experimental and clinical research, 18(8), BR309.‏
  28. Vacchi-Suzzi, C., Hahne, F., Scheubel, P., Marcellin, M., Dubost, V., Westphal, M., ... & Couttet, P. (2013). Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions. PloS one8(1), e52442.‏
  29. Anand, R., Kumari, P., Kaushal, A., Bal, A., Wani, W. Y., Sunkaria, A., ... & Gill, K. D. (2012). Effect of acute aluminum phosphide exposure on rats—A biochemical and histological correlation. Toxicology letters, 215(1), 62-69.‏
  30. Jafari, M. K., Ansarin, K., & Jouyban, A. (2015). Comments on" Use of Malondialdehyde as a Biomarker for Assesing Oxidative Stress in Different Disease Pathologies: A Review". Iranian journal of public health, 44(5), 714-5.‏
  31. Govender, J., Loos, B., Marais, E., & Engelbrecht, A. M. (2014). Mitochondrial catastrophe during doxorubicin‐induced cardiotoxicity: a review of the protective role of melatonin. Journal of pineal research, 57(4), 367-380.‏
  32. Asghari, M. H., Abdollahi, M., de Oliveira, M. R., & Nabavi, S. M. (2017). A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. Journal of Pharmacy and Pharmacology, 69(3), 236-243.‏
  33. Climent, M., Viggiani, G., Chen, Y. W., Coulis, G., & Castaldi, A. (2020). MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. International Journal of Molecular Sciences, 21(12), 4370.‏
  34. He, J., & Jiang, B. H. (2016). Interplay between reactive oxygen species and microRNAs in cancer. Current pharmacology reports, 2(2), 82-90.‏
  35. Xue, J., Liu, J., Xu, B., Yu, J., Zhang, A., Qin, L., ... & Yang, Y. (2021). miR-21-5p inhibits inflammation injuries in LPS-treated H9c2 cells by regulating PDCD4. American Journal of Translational Research13(10), 11450.‏
  36. Yuan, Y., Tong, L., & Wu, S. (2015). microRNA and NF-kappa B. microRNA: Basic Science: From Molecular Biology to Clinical Practice, 157-170.‏
  37. Long, S., Zhao, N., Ge, L., Wang, G., Ran, X., Wang, J., ... & Wang, T. (2018). MiR‐21 ameliorates age‐associated skin wound healing defects in mice. The journal of gene medicine, 20(6), e3022.
  38. Ibrahim, S. F., Ali, M. M., Basyouni, H., Rashed, L. A., Amer, E. A., & El-Kareem, A. (2019). Histological and miRNAs postmortem changes in incisional wound. Egyptian Journal of Forensic Sciences, 9(1), 1-6.‏
  39. Sampaio-Silva F, Magalhães T, Carvalho F, Dinis-Oliveira RJ, Silvestre R (2013) Profiling of RNA degradation for estimation of post morterm interval. Plos One. 8(2): e56507
  40. Wang, J. L., Wang, X., Yang, D., & Shi, W. J. (2016). The Expression of MicroRNA-155 in plasma and tissue is matched in human laryngeal squamous cell carcinoma. Yonsei Medical Journal, 57(2), 298-305.‏
  41. Bail, S., Swerdel, M., Liu, H., Jiao, X., Goff, L. A., Hart, R. P., & Kiledjian, M. (2010). Differential regulation of microRNA stability. Rna, 16(5), 1032-1039.‏
  42. Wang, Y., Sheng, G., Juranek, S., Tuschl, T., & Patel, D. J. (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature, 456(7219), 209-213.‏
  43. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., ... & Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science, 307(5711), 932-935.‏
  44. Zhu, B. L., Tanaka, S., Ishikawa, T., Zhao, D., Li, D. R., Michiue, T., ... & Maeda, H. (2008). Forensic pathological investigation of myocardial hypoxia-inducible factor-1α, erythropoietin and vascular endothelial growth factor in cardiac death. Legal Medicine, 10(1), 11-19.‏