Assessment of Genomic Micro RNA 337 biomarker in Egyptian Patient with Vitiligo

Document Type : Original Article

Authors

1 Dermatology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt

2 Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt

3 Resident at Dermatology department, Ehnasia general hospital, Beni-Suef 62511, Egypt

Abstract

Background: Inherited genes and environmental factors play several roles in the etiology of vitiligo, a common skin depigmenting condition. For a long time, scientists have been unable to pin down the exact chemical mechanism that sets off the pathological process of vitiligo. Objectives: to identify miRNA337's function as a novel vitiligo marker. Methods: In the dermatology clinic at Beni-Suef University Hospital in Egypt conducted a case control study on 52 people, splitting them evenly between 26 people with vitiligo and 26 people without the condition. Cases with vitiligo went through personal history, physical examination, vitiligo severity index (VASI) score and blood samples in both groups. Quantitative real-time polymerase chain reaction analysis (PCR) was used to compare miRNA337 concentrations between the two groups. Results: MiRNA 337 was downregulated in the blood by a factor of two in patients compared to controls. MiRNA 337 levels in females' blood were somewhat greater than those in men', but this difference did not reach statistical significance. There was no association between VASI score, familial history, or precipitating circumstances and miRNA 337 levels in the blood. Conclusion: There was an inverse relationship between miRNA 337 levels and VASI score, suggesting that miRNA 337 was downregulated in vitiligo.

Keywords

Main Subjects


  1. Solak, B.; Dikicier, B.S.; Cosansu. N.C. and Erdem, T. (2017): Effects of age of onset on disease characteristics in non-segmental vitiligo. Int J Dermatol; 56: 341-345.
  2. Aisha, M. D. and Simon, F. T. (2018): Comorbidities in vitiligo: comprehensive review. International Journal of Dermatology, 57, 1157–1164.
  3. Aly, D.G.; Salem, S.A.; Amr, K.S. and El-Hamid, M.F.A. (2018): A study of the association of glutathione S-transferase M1/T1 polymorphisms with susceptibility to vitiligo in Egyptian patients. A Bras Dermatol; 93:54-58.
  4. Yao, Q.; Song, Z.; Wang, B. and Zhang, J.A. (2018): Emerging roles of microRNAs in the metabolic control of immune cells. Cancer Lett; 433:10-17.
  5. Tian, Z.G.; Zhuang, Y.; Jin, Z.; Zhou, F.; Zhu, L.F. and SHEN, P.C. (2018): MicroRNA-337-5p participates in the development and progression of osteosarcoma via ERBB, MAPK and VEGF pathways European Review for Medical and Pharmacological Sciences; 22: 5460-5470.
  6. Abdelsalam, M.; Sherihan, H. A.; Marwa, Z.; Hend, M.; and Maged, M. (2021): TLR4 gene polymorphisms in Egyptian vitiligo patients: insights into emerging association with clinical activity, family history, and response to therapy Journal of Genetic Engineering and Biotechnology 19:132.
  7. Kawakami, T., & Hashimoto, T. (2011): Disease severity indexes and treatment evaluation criteria in vitiligo. Dermatology Research and Practice, 2011.
  8. Bergqvist, C., & Ezzedine, K. (2021): Vitiligo: A focus on pathogenesis and its therapeutic implications. The Journal of dermatology, 48(3), 252-270.
  9. Yan, S., Shi, J., Sun, D., & Lyu, L. (2020): Current insight into the roles of microRNA in vitiligo. Molecular Biology Reports, 47(4), 3211-3219.
  10. Picardo, M & Taïeb, A. (2019). Definitions and classification. Vitiligo, 11-23.
  11. Bergqvist, C., & Ezzedine, K. (2020): Vitiligo: a review. Dermatology, 236(6), 571-592.
  12. Alikhan, A., Felsten, L. M., Daly, M., & Petronic-Rosic, V. (2011): Vitiligo: a comprehensive overview: part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. Journal of the American Academy of Dermatology, 65(3), 473-491.
  13. Zhang Y, Cai Y, Shi M, et al. (2016): The prevalence of vitiligo: a meta-analysis. PLoS One. 2016;11:e0163806.
  14. Nicolaidou E, Antoniou C, Miniati A, et al. (2012): Childhood- and later-onset vitiligo have diverse epidemiologic and clinical characteristics. J Am Acad Dermatol. 2012;66:954–
  15. Jin Y, Roberts GHL, Ferrara TM, et al. (2019): Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. Nat Commun. 2019;10:391.
  16. Henning, S. W., Jaishankar, D., Barse, L. W., Dellacecca, E. R., Lancki, N., Webb, K., ... & Le Poole, I. C. (2020): The relationship between stress and vitiligo: Evaluating perceived stress and electronic medical record data. PloS one15(1), e0227909.
  17. JI. & Silverberg. NB. (2015): Vitiligo disease triggers: psychological stressors preceding the onset of disease. Cutis. 2015; 95(5):255–62. PMID: 26057504
  18. Pajvani, U., Ahmad, N., Wiley, A., Levy, R. M., Kundu, R., Mancini, A. J., ... & Paller, A. S. (2006): The relationship between family medical history and childhood vitiligo. Journal of the American Academy of Dermatology, 55(2), 238-244.
  19. Nejad, S. B., Qadim, H. H., Nazeman, L., Fadaii, R., & Goldust, M. (2013): Frequency of autoimmune diseases in those suffering from vitiligo in comparison with normal population. Pakistan Journal of Biological Sciences: PJBS, 16(12), 570-574.
  20. Agarwal S, Gupta S, Ojha A, Sinha R. (2013): Childhood vitiligo: clinicoepidemiologic profile of 268 children from the Kumaun region of Uttarakhand. India Pediatr Dermatol. 2013;30:348–53.
  21. Hallaji, Z., Ghiasi, M., Eisazadeh, A., & Rayati Damavandi, M. (2012): Evaluation of the effect of disease duration in generalized vitiligo on its clinical response to narrowband ultraviolet B phototherapy. Photodermatology, photoimmunology & photomedicine, 28(3), 115-119.
  22. Silpa-Archa, N., Weerasubpong, P., Junsuwan, N., Yothachai, P., Supapueng, O., & Wongpraparut, C. (2019): Treatment outcome and persistence of repigmentation from narrow-band ultraviolet B phototherapy in vitiligo. Journal of Dermatological Treatment, 30(7), 691-696.
  23. Martins, C. P. D. S., Hertz, A., Luzio, P., Paludo, P., & Azulay‐Abulafia, L. (2020): Clinical and epidemiological characteristics of childhood vitiligo: a study of 701 patients from Brazil. International Journal of Dermatology, 59(2), 236-244.
  24. Mogawer, R. M., Mostafa, W. Z., & Elmasry, M. F. (2020): Comparative analysis of the body surface area calculation method used in vitiligo extent score vs the hand unit method used in vitiligo area severity index. Journal of Cosmetic Dermatology, 19(10), 2679-2683.
  25. Alghamdi KM, Moussa NA, Mandil A, et al. (2012): Public perceptions and attitudes toward vitiligo. J Cutan Med Surg. 2012;16:334-340.
  26. Spritz, R. A., & Andersen, G. H. (2017). Genetics of vitiligo. Dermatologic clinics35(2), 245-255.
  27. Xiao, W., Yao, E., Zheng, W., Tian, F., & Tian, L. (2017). miR-337 can be a key negative regulator in melanoma. Cancer Biology & Therapy18(6), 392-399.
  28. Samaka, R. M., Basha, M. A., & Menesy, D. (2019): Role of Janus kinase 1 and signal transducer and activator of transcription 3 in vitiligo. Clinical, Cosmetic and Investigational Dermatology, 12, 469.
  29. Xia, L., Wu, L., Xia, H., Bao, J., Li, Q., Chen, X., & Xia, R. (2019): miR-337 suppresses cutaneous T-cell lymphoma via the STAT3 pathway. Cell Cycle, 18(14), 1635-1645.