Measurement of Serum Level of Tryptase in Patients with Vitiligo

Document Type : Original Article

Authors

1 Dermatology department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt

2 Biochemistry department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt

3 Dermatology department, Sennours central hospital, Fayoum 2951862, Egypt

Abstract

Background: The loss of melanocytes is one symptom of vitiligo, a disorder with several causes. None of the proposed genetic, immunologic, autoimmunologic, cytotoxic, neuronal, or inflammatory components of vitiligo's etiopathogenesis adequately explains the disease's wide variety of symptoms. Objectives: To quantify serum tryptase levels in individuals with vitiligo and evaluate its correlation with disease severity to determine its function in the pathophysiology of vitiligo.. Methodology: This was a Case control study at outpatient's clinic of Dermatology department at Beni-Suef University hospital. 90 participants were divided into 45 with vitiligo and 45 normal participants as controls. All individuals were subjected to full history, full clinical examination, and analysis of serum tryptase by Enzyme Linked Immunosorbent Assay (ELISA). Vitiligo severity was classified according to VASI score. Results: VASI score recorded highly significant correlation with disease duration and significant correlation with patient's age. The levels of serum tryptase in both vitiligo and healthy groups (p<0.001) showed highly significant statistical difference between both groups. Serum levels of tryptase showed no difference recorded statistically in sex, family history, lesions type of vitiligo, VASI score, patients' age nor disease duration in vitiligo group. Conclusion: Serum level of tryptase increased in vitiligo patients but not associated with vitiligo severity.

Keywords

Main Subjects


  1. Frisoli, M. L., Essien, K., & Harris, J. E. (2020). Vitiligo: mechanisms of pathogenesis and treatment. Annual review of immunology38(1), 621-648.
  2. Spritz, R. A., & Santorico, S. A. (2021). The genetic basis of vitiligo. Journal of Investigative Dermatology141(2), 265-273.
  3. Marchioro, H. Z., Castro, C. C. S. D., Fava, V. M., Sakiyama, P. H., Dellatorre, G., & Miot, H. A. (2022). Update on the pathogenesis of vitiligo. Anais Brasileiros de Dermatologia97(4), 478-490.
  4. Speeckaert, R., & van Geel, N. (2017). Vitiligo: an update on pathophysiology and treatment options. American journal of clinical dermatology, 18(6), 733-744.
  5. Wang, Y., Li, S., & Li, C. (2021). Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clinical Reviews in Allergy & Immunology61(3), 299-323.
  6. Beyzaee, A. M., Goldust, M., Patil, A., Rokni, G. R., & Beyzaee, S. (2022). The role of cytokines and vitamin D in vitiligo pathogenesis. Journal of Cosmetic Dermatology21(11), 6314-6325.
  7. Komen, L., Da Graça, V., Wolkerstorfer, A., De Rie, M. A., Terwee, C. B., & Van Der Veen, J. P. W. (2015). Vitiligo Area Scoring Index and Vitiligo European Task Force assessment: reliable and responsive instruments to measure the degree of depigmentation in vitiligo. British Journal of Dermatology172(2), 437-443.
  8. Lobbes, H., Reynaud, Q., Mainbourg, S., Lega, J. C., Durieu, I., & Durupt, S. (2020). Dosage de la tryptase: un guide d'utilisation pour le clinicien. La Revue de Médecine Interne41(11), 748-755.
  9. Lyons, J. J. (2021). Inherited and acquired determinants of serum tryptase levels in humans. Annals of Allergy, Asthma & Immunology127(4), 420-426.
  10. Paolino, G., Moliterni, E., Didona, D., Cardone, M., Lopez, T., Garelli, V., ... & Calvieri, S. (2017). Serum tryptase levels in melanoma patients: case-control study and review of the literature. Giornale Italiano di Dermatologia e Venereologia: Organo Ufficiale, Societa Italiana di Dermatologia e Sifilografia154(1), 18-25.
  11. Xiao, H., Dong, Y., Xiao, L., Liang, X., & Zheng, J. (2022). Identification of key gene contributing to vitiligo by immune infiltration. International Journal of Clinical and Experimental Pathology15(4), 157.
  12. Grimes, P. E., & Nashawati, R. (2017). Depigmentation therapies for vitiligo. Dermatologic clinics, 35(2), 219-227.
  13. Said Fernandez, S. L., Sanchez Domínguez, C. N., Salinas Santander, M. A., Martinez Rodriguez, H. G., Kubelis Lopez, D. E., Zapata Salazar, N. A., ... & Ocampo Candiani, J. (2021). Novel immunological and genetic factors associated with vitiligo: A review. Experimental and therapeutic medicine, 21(4), 1-1.
  14. Bergqvist, ,     &     Ezzedine,     K.     (2020):     Vitiligo:     a review. Dermatology, 236(6), 571-592.
  15. Rahman, Q. S., & Takahashi, S. (2011): 2 Hyperpigmentation and skin- lightening agents. In Comprehensive Aesthetic Rejuvenation (pp. 173- 176). CRC Press.
  16. Speeckaert, R., & van Geel, N. (2017). Vitiligo: an update on pathophysiology and treatment options. American journal of clinical dermatology, 18(6), 733-744.
  17. Wang, Y., Li, S., & Li, C. (2021). Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clinical Reviews in Allergy & Immunology61(3), 299-323.
  18. Katayama, I., Yang, L., Takahashi, A., Yang, F., & Wataya-Kaneda, M. (2021). The two faces of mast cells in vitiligo pathogenesis. Exploration of Immunology, 1(4), 269-284.
  19. Garcia, G., Curiel, B., Félix, D. V., De Lira-Quezada, C., Gomez, C. E., & Gonzalez-Diaz, S. (2023). POSITIVE OUTCOMES WITH OMALIZUMAB IN A PATIENT WITH AUTOIMMUNE URTICARIA AND DIABETES MELLITUS: CASE REPORT. Annals of Allergy, Asthma & Immunology, 131(5), S129.
  20. Gan, E. Y., Cario-André, M., Pain, C., Goussot, J. F., Taïeb, A., Seneschal, J., & Ezzedine, K. (2016): Follicular vitiligo: a report of 8 cases. Journal of the American Academy of Dermatology, 74(6), 1178- 1184.
  21. Aroni, K., Voudouris, S., Ioannidis, E., Grapsa, A., Kavantzas, N., & Patsouris, E. (2010). Increased angiogenesis and mast cells in the centre compared to the periphery of vitiligo lesions. Archives of dermatological research302, 601-607.
  22. Bertolini M, Zilio F, Rossi A, et al. (2014): Abnormal interactions between perifollicular mast cells and CD81 T-cells may contribute to the pathogenesis of alopecia areata. PLoS One.;9:e94260.
  23. Chen, Y., Griffiths, C. E., & Bulfone-Paus, S. (2023). Exploring Mast Cell–CD8 T Cell Interactions in Inflammatory Skin Diseases. International Journal of Molecular Sciences24(2), 1564.
  24. Inoue, S., Katayama, I., Suzuki, T., Tanemura, A., Ito, S., Abe, Y., ... & Matsunaga, K. (2021): Rhododendrol‐induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism‐ based treatments in comparison with vitiligo. The Journal of Dermatology, 48(7), 969-978.
  25. Kwon, S. H., Na, J. I., Choi, J. Y., & Park, K. C. (2019): Melasma: Updates and perspectives. Experimental dermatology, 28(6), 704-708.
  26. Amer, M., & Maged, M. (2009). Cosmeceuticals versus pharmaceuticals. Clinics in dermatology27(5), 428-430.
  27. Moretti, S., Nassini, R., Prignano, F., Pacini, A., Materazzi, S., Naldini, A., ... & Massi, D. (2009). Protease-activated receptor-2 downregulation is associated to vitiligo lesions. Pigment cell & melanoma research, 22, 335-338.
  28. Shakhbazova, A., Wu, H., & Sivamani, R. (2020). 18478 Alternative and adjunct therapies for vitiligo. Journal of the American Academy of Dermatology, 83(6), AB213.
  29. Vitte, J. (2015): Human mast cell tryptase in biology   and medicine. Molecular immunology, 63(1), 18-24.